Inner Circle Newsletter December 2024

Welcome to Open Research Institute’s Inner Circle Newsletter for December 2024. We have a lot to share with you!

Open Research Institute is a non-profit dedicated to open source digital radio work. We do both technical and regulatory work. Our designs are intended for both space and terrestrial deployment. We’re all volunteer. You can get involved by visiting https://openresearch.institute/getting-started

Membership is free. All work is published to the general public at no cost. Our work can be reviewed and designs downloaded at https://github.com/OpenResearchInstitute

We equally value ethical behavior and over-the-air demonstrations of innovative and relevant open source solutions. We offer remotely accessible lab benches for microwave band radio hardware and software development. We host meetups and events at least once a week. Members come from around the world.

Read on for regulatory, technical, and social articles. We close with a calendar of recent and upcoming events.

Want to subscribe to the Inner Circle? Sign up at http://eepurl.com/h_hYzL

Previous issues of Inner Circle can be found at https://www.openresearch.institute/newsletter-subscription/

Regulatory Work at ORI

Making Open Source Easier for Everyone

Past regulatory work at ORI can be found at https://github.com/OpenResearchInstitute/documents/tree/master/Regulatory

219 MHz Project

by Mike McGinty

Federal Communications Commission License DB (FCC LicDB) is a set of tools for exploring the FCC license database dumps. The tools are at https://github.com/tarxvftech/fcc_licdb

These database dumps are at https://www.fcc.gov/wireless/data

What you see in FCC LicDB is a way to download and then import most of the weekly database dumps to an sqlite database. Expect a couple gigabytes for uls.db, depending on how many services you import.

After that, the purpose of this repository gets more esoteric because it’s less about exploring and more about answering. (Answering what?)

There’s a problem with the 219-220 MHz amateur band. 47 CFR part 80 defines this band (among others) as for Automated Maritime Telecommunications Systems (AMTS), but that idea completely failed and so now there are no AMTS stations, just companies licensed for AMTS, usually through leases, that use the spectrum for other purposes.

The restrictions on Amateur secondary use of the band defined in part 97 were designed for a world where AMTS stations were on the coast. This, along with other circumstance, define the problem that exists today – it is nearly impossible to operate an Amateur radio on the band despite hams deliberately being given the spectrum.

See https://github.com/tarxvftech/47CFR for more details on this situation. I started this LicDB repo to figure out where these AMTS licensees operate, and what they are using it for. The ULS database interfaces available to the public are not sufficient for answering questions like this (details in W5NYV’s first talk “The Haunted Band”).

But where a generic system may struggle, a more targeted approach can solve.

What you see below is a functionality-first view of the FCC licensing system mapping as much of the AMTS stations licensed or operating in the 219-220MHz band as can be found in the database.

It’s not perfect – working on data from other people and systems that you have no control over never is – but it’s much better than all existing alternatives.

Other Projects

It’s expected this would be useful for redoing W5NYV’s exploration into the demographics of Amateur Radio operators in the US: https://github.com/Abraxas3d/Demographics

Similarly, it might be very interesting to plot ALL the LO, PC, and other entries, and then merge in the other data that isn’t in the FCC database, like ham radio repeaters, to try to make the radio services in the ether around you that much more legible.

Some entries are not easy to import into the database, or have data errors that make them difficult to plot on the map. Those entities are not presently accounted for.

Above, AMTS stations in the United States. Below, a few detail images from the map, which can be found at https://amts.rf.band (heavy data, be patient for first load).

An article from ORI called “Space Frequency Block Coding Design for the Neptune Communications Project” will be in the January-February 2025 issue of QEX Magazine, from ARRL. Thank you to ARRL for publishing open source work from ORI.

Article Summary

The article discusses the design and implementation of Space Frequency Block Coding (SFBC) in the Neptune Communications Project, a digital radio initiative operating at 5 GHz for amateur radio applications.


Key Concepts and Objectives:

SFBC is a technique used in digital communications to improve signal resiliency by leveraging spatial, frequency, and coding diversity. It is commonly implemented in systems using Orthogonal Frequency Division Multiplexing (OFDM), utilizing multiple antennas for diversity. The mathematics are explained step-by-step with diagrams and equations. Noise calculations worked out in an Appendix.


Amateur Radio Application:

The Neptune project focuses on transmitting robust digital signals in noisy environments, essential for drone and aerospace communications. SFBC increases the likelihood of data recovery by mitigating multi-path interference and improving signal-to-noise ratio (SNR). An open source OFDM modem is needed in amateur radio.


Technical Details


Implementation:

SFBC transforms transmitted signal samples mathematically before sending them via two transmit antennas. Multi-path and spatial diversity enhance signal integrity against environmental reflections and interference.


Operation:

Signals are transmitted using OFDM, where subcarriers provide frequency diversity. The encoding does not increase throughput on its own but makes it easier to achieve maximum throughput performance.


Coding techniques like the Alamouti scheme are explained, with diagrams, for creating and decoding signals.


Trade-offs:

SFBC reduces SNR by 3 dB compared to optimal techniques like Maximum Ratio Combining but avoids the need for channel state knowledge at the transmitter.


Practical Implementation:
SFBC was modeled and tested in MATLAB/Simulink, with plans for FPGA and ASIC implementations.


Future work includes:

Expanding to Space Time Block Coding (STBC).

Live demonstrations of SFBC/STBC performance differences.

Open-source release of HDL source code for hardware implementations.


Call to Action:

The Neptune project is a volunteer-driven, open-source initiative under the Open Research Institute (ORI). Community participation is encouraged, providing educational and developmental opportunities in digital communication technologies.

Watch Dr. Marks explain the RFBitBanger project and the SCAMP protocol in this video at https://www.youtube.com/watch?v=Fbgs_4QsKnE

And then… let us tell you that SCAMP is now in FLDigi!

SCAMP is now even easier to use. If you want to get involved with this new mode and also build your skills with a very special low power HF radio kit, please visit our eBay listing for kits at https://www.ebay.com/itm/364783754396

A Tale of Troubleshooting

Problem Solving our Minimum Shift Keying Implementation in the Lab
by Team OPV

Minimum shift keying (MSK) is the modulation used by Opulent Voice, our open source uplink protocol for our space and terrestrial transceiver. Unlike some other modulations, there aren’t a lot of documented and working examples of MSK, despite the many advantages of using this modulation for space and terrestrial channels. One of our educational goals at ORI is to provide exactly that, a documented and working example of MSK, that also delivers useful functionality to the amateur radio satellite service. 

In the process of writing down a description of what happens mathematically, so that software defined radios like the PLUTO SDR can transmit and receive our Opulent Voice protocol, there’s been quite a few troubleshooting sessions. One session solved a problem where the main lobe bandwidth was too large. Another session solved a problem where the processor side code didn’t properly configure the radio chip. Another session switched to the correct version of LibIIO, or Library of Industrial Input and Ouput routines. The wrong library meant that the radio was “sort of” working, but not completely. 

Troubleshooting and debugging systems is where most volunteer engineering time is spent. This is no different from professional development, where blank-paper time spent writing down routines may be a small fraction of the total development time of a project.

It can take multiple attempts to solve a problem. When this happens, it’s important to back up completely and recheck basic assumptions. Looking at the images below, one can see the desired MSK spectrum at the top. On the bottom is an example of an undesirable spectrum. The main lobe is bifurcated and the sidelobes have extra power. If you look at the graph, you can see that the sidelobes are higher in the “bad” example than they are in the “good” example. These are all clues, and there are several ways to go about attempting to solve the problem. The bad or “split” spectrum seemed to show up at random times, but it would go away when new PI controller gain pairs were written to the radio. 

Why were we writing new proportional and integral gains to the radio? We were trying to tune our PI Filter, which is in the Costas Loop, which is in charge of tracking the frequency and phase of our signal so we can demodulate and decode successfully. We wrote code to search through proportional and integral gain pairs, testing their performance both in digital loopback and in loopback over the air.

After reviewing the code, asking for help, getting a variety of good advice, and trying to duplicate the problem in MATLAB, the problem unexpectedly went away when the processor side code was updated to remove extra writes to MSK block configuration registers.

The lessons learned?

* Clean code that matches the design of the hardware may prevent unexpected behavior. Don’t be sloppy with your test code!

* Keep up to date on changes in register accesses and behavior. There was a change from setting and clearing a bit in a register to the bit being toggled. This was a change from the level being important to the change in the level being important. Do your best to match what’s in the hardware! 

Below, the “bad” spectrum as observed in the lab.

Below, the “good” spectrum, which returned after what we thought were unrelated code changes.

Opulent Voice at University of Puerto Rico

An Educational Success Story

by Michelle Thompson W5NYV with Oscar Resto KP4RF

Oscar Resto is an Instrumentation Specialist at the University of Puerto Rico’s Department of Physics. He also serves as the Principal Investigator for the university’s RockSat-X program. RockSat-X is a highly-regarded and very successful educational program sponsored by NASA and the Colorado Space Grant Consortium at the University of Colorado at Boulder. RockSat-X offers university and community college teams the opportunity to develop experiments for suborbital rocket flights, fostering innovation and practical experience in space-related fields.

Beyond his academic roles, Oscar is active in the amateur radio community, holding the call sign KP4RF. He has been involved in initiatives such as renewing the Memorandum of Understanding between the ARRL Puerto Rico Section and the American Red Cross Puerto Rico Chapter and has presented to a wide variety of audiences about amateur radio and emergency communications during and after major hurricanes. 


The University of Puerto Rico has actively participated in NASA’s RockSat-X program since 2011, providing students with hands-on experience in designing, fabricating, testing, and conducting experiments for spaceflight. UPR’s RockSat-X team has developed increasingly complex experiments over the years. In 2011, UPR’s inaugural RockSat-X project utilized mass spectrometry to analyze atmospheric particles and pressure. Subsequent payloads have continued to evolve and refine the investigation of the “middle atmosphere”, an often-overlooked layer in atmospheric studies. 

Oscar’s engineering design philosophy is to put the program in the hands of the students. The students are fully involved from the beginning of the process until launch. Oscar supports and enables consistent student success in two ways. First, by using the Socratic method of asking questions to lead the students through the many stages of design, test, documentation, and build. Second, by communicating clear expecatations about process and deadlines. Students source parts, build components using a wide range of manufacturing processes, and program all of the control and embedded devices. They carry out testing at the component, module, and end-to-end systems level. The student interface with NASA through meetings and regular reports.  


Recent missions included deploying sterilized collection systems into the space environment to gather organic molecules, such as amino acids, proteins, and DNA, from altitudes between 43 to 100 miles above Earth. To ensure the integrity of collected samples, the team implemented innovative decontamination procedures that were carried out in flight.

For the 2023 and 2024 UPR RockSat-X entry, Opulent Voice was included as a communications payload. That version was a 4-ary FSK modulation, voice only, and ran on a general-purpose processor. In 2023, the rocket experienced a failure. In 2024, the mission was a complete success, with Opulent Voice received on a student-built and crewed portable station near the launch site. For 2025, assuming UPR’s RockSat-X application is accepted by NASA, the Minimum Shift Key (MSK) version of Opulent Voice, implemented on an FPGA and deployed on a PLUTO SDR, will be used by the student build team. This MSK version is much more advanced and more spectrally efficient.

Review the MSK version at https://github.com/OpenResearchInstitute/pluto_msk
See an image of the student poster presentation about the 2024 UPR RockSat-X project below. 

Shipment was delayed, but a nice surprise for Ribbit has finally arrived. Below is the plaque for Ribbit’s 2023 Technical Innovation Award.

The metal surface has black lettering and an image of a laptop computer. The body of the plaque is a handsome hardwood.

The text reads “For developing the Ribbit app for Android and iOS devices. The innovative and open-source Ribbit app allows amateurs to utilize audio from amateur radio transceivers such as VHF/UHF handhelds to send and receive text messages across the devices. The Ribbit app leverages OFDM technology currently used in cellular 4G and 5G networks & WiFi.”

Below, the plaque hanging on the wall in Remote Lab West.

Remote Labs are test benches with spectrum analyzers, oscilloscopes, power and frequency meters, FPGA development stations, power supplies, and multiple SDRs. The equipment is supported by a computer running virtual machines with a variety of operating systems to support software, firmware, and hardware development. Remote Labs are available 24 hours a day, 365 days a year for open source development. 

Thank you to Pierre and Ahmet for all the extremely hard work to make Ribbit so successful!

Learn more about Ribbit and try out the web app at https://www.ribbitradio.org

Geometry Puzzle

Given a 3, 4, 5 right triangle, with an inscribed semi-circle, where the hypotenuse of the triangle bisects the circle to form this semi-circle, find the area of this semi-circle.

Spoiler! The worked-out solution by Paul Williamson KB5MU is below.  

The Inner Circle Sphere of Activity

December 17-22 2024 – Open Research Institute participates on the Federal Communication Commission’s Technological Advisory Council (TAC). Working groups composed of volunteers from industry, academia, and open source (ORI) meet weekly and debate and deliver advice to the FCC quarterly. This hybrid meeting is streamed on the FCC website. 

December 31, 2024 – Fiscal year ends for Open Research Institute. Work begins on filing 2024 IRS 990 returns, which are due May 15, 2025.

December 20, 2024 through January 6, 2025 – Holiday Break for all labs and teams. 

March 6, 2025 – Open Research Institute celebrates another birthday with parties planned so far in the US, Canada, and Europe. Sign up for a fun day commemorating open source volunteers around the world by writing hello@openresearch.institute.

Thank you to all who support our work! We certainly couldn’t do it without you. 

Anshul Makkar, Director ORI
Frank Brickle, Director ORI
Keith Wheeler, Secretary ORI
Steve Conklin, CFO ORI
Michelle Thompson, CEO ORI
Matthew Wishek, Director ORI

Inner Circle Newsletter: Summer 2024

A Sizzling Summer Summary prepared just for you!

Read on for highlights from all our technical and regulatory open source digital radio work. ORI’s work directly benefits amateur radio, provides educational and professional development opportunities for people all over the world, and puts ethics and good governance first.

Opulent Voice Flying High

Opulent Voice is an open source high bitrate digital voice (and data) protocol. It’s what we are using for our native digital uplink protocol for ORI’s broadband microwave digital satellite transponder project. Opulent Voice has excellent voice quality, putting it in a completely different category than low bitrate digital communications products such as D-Star, Yaesu System Fusion, and DMR.

Opulent voice switches between high resolution voice and data without requiring the operator to switch to a separate packet mode. Opulent voice also handles keyboard chat and digital file transmission. Seamless integration of different data types, using modern digital communication techniques, differentiates Opulent Voice from any other amateur radio protocol.

Opulent Voice will fly on the University of Puerto Rico’s RockSat-X launch on 13 August 2024. It’s been a very positive experience working with the students and faculty at the University.

An implementation on FPGA for the PLUTO SDR is well underway, with a active international team delivering quality results. This implementation will not only turn your PLUTO SDR into an Opulent Voice transceiver, but it will have remote operation functionality.

Hear what Opulent Voice sounds like by following the links in an earlier update at https://www.openresearch.institute/2022/07/30/opulent-voice-digital-voice-and-data-protocol-update/

We’ve come quite a long way in less than two years! The FPGA implementation upgrades the modulation from 4-ary frequency shift keying to minimum shift keying, and increases forward error correction performance and flexibility.

HAMCON:ZION 2024 is This Week!

Please visit us at HAMCON:ZION 2024 this weekend, 12-13 July 2024 in St. George, Utah, USA.

The event website is https://www.hamconzion.com/

ORI will have a club booth at the event. We opened our space to QRZ.com (https://www.qrz.com/) and Deep Space Exploration Society (https://dses.science/). This combined exhibit is a one-stop shop for the best in community, technical, and citizen science amateur radio activity.

We have a volunteer presenting on Artificial Intelligence and Machine Learning in Amateur Radio. The talk opens with a brief summary of the history of our relationship with created intelligence and then explores case studies of the use of artificial intelligence and machine learning in amateur radio. Talk is 1pm on Friday in Entrada B.

Open Research Institute at DEFCON32

We will present an Open Source Showcase at DEFCON in the Radio Frequency Village 12-13 August 2024, with accessible exhibits and demonstrations. Here is the list of scheduled project demonstrations.

Regulatory Efforts: ORI works hard for open source digital radio work and moves technology from proprietary and controlled to open and free in intelligent and mutually beneficial ways. Our work on ITAR, EAR, Debris Mitigation, AI/ML, and Synthetic Aperture Radar will be presented and explained. Find out more at https://github.com/OpenResearchInstitute/documents/tree/master/Regulatory

Ribbit: this open source communications protocol uses the highest performance error correction and modern techniques to turn any analog radio into a digital text terminal. No wires, no extra equipment.. Learn how to use this communications system and get involved in building a truly innovative open source tactical radio service. Find out more at https://www.ribbitradio.org

Satellite: ORI has the world’s first and only open source HEO/GEO communications satellite project. All working parts of the transponder project will be demonstrated, from Opulent Voice to antenna designs.

The Dumbbell antenna: We have an HF antenna design based on a highly effective inductive loading technique first written about in 1958. Learn about this antenna and find out how to make your own. Repository can be found at https://github.com/OpenResearchInstitute/dumbbell

RFBitBanger: an HF QRP system and novel digital protocol called SCAMP. Kit information and updates will be available. Get your Batch 2 kit today at https://www.ebay.com/itm/364783754396

Radar: Our regulatory and technical work in synthetic aperture radar will be demonstrated. One of our volunteers will be giving a talk about open source synthetic aperture radar in the RF Village speakers track. Here is the abstract.

Synthetic Aperture Radar (SAR) is one of the most useful and interesting techniques in radar, providing high resolution radar satellite images from relatively small satellites. SAR is not limited by the time of day or by atmospheric conditions. It complements satellite photography and other remote sensing techniques, revealing activity on the Earth that would otherwise be hidden. How does the magic happen? This talk will explain the basics of SAR in an accessible and friendly way. That’s the good news.

The bad news? SAR is controlled by ITAR, the International Traffic in Arms Regulations, and is listed in the USML, the United States Munitions List. ITAR regulates the export of defense articles and services and is administered by the US State Department. This includes both products and services as well as technical data. Such as, catalogs of high resolution radar imagary. The articles and services regulated by ITAR are identified in the USML. If ITAR doesn’t get you, then EAR just might. The Export Administration Regulations (EAR) are administered by the US Commerce Department, and items are listed on a Commerce Control List (CCL). Commercial products and services and dual-use items that are not subject to ITAR could be regulated by EAR. Even if you are free of ITAR and EAR, you may still be regulated by yet another agency, such as the FCC.

Regulation of SAR chills commercial activity, creating costly and time-consuming burdens. But why does any of this matter to signals hackers? Because technology has overtaken the rules, and devices used by enthusiasts, researchers, students, and hackers are increasingly likely to have enough capability to fall into export-controlled categories. The penalties are harsh. Fear of running afoul of ITAR is enough to stop a promising open source project in its tracks.

Is there a way forward? Yes. ITAR has a public domain carve out. Information that is published and that is generally accessible or available to the public is excluded from control as ITAR technical data. That’s great in theory, but how can we increase our confidence that we are interpreting these rules correctly? How can we use and build upon these rules, so that our community can learn and practice modern radio techniques with reduced fear and risk? Can we contribute towards regulatory relief when it comes to SAR? We will describe the process, report on the progress, and enumerate the challenges and roadblocks.

RFBitBanger Batch 2 Kits Available

Kits are available at our eBay store at this link https://www.ebay.com/itm/364783754396

Be a part of the future with a prototype Batch 2 kit build of the RFBitBanger, a low-power high-frequency digital radio by Dr. Daniel Marks KW4TI. Presented by Open Research Institute, this kit is designed to produce 4 watts of power and opens up a new digital protocol called SCAMP.

SCAMP Is now available in FLDigi!

Source code and extensive instructions can be found at https://github.com/profdc9/fldigi

Your donation in exchange for this kit directly enables the further development of an innovative Class E amplifier based radio design. It has a display, button menu navigation, and keyboard connection for keyboard modes and keyboard-enabled navigation. This radio can be taken portable or used in a case. If you have a 3d printer, then Dr. Marks has a design ready for you to print in the repository linked below.

  • Built-in digital modes: CW, RTTY, SCAMP (FSK and OOK, multiple speeds)
  • Key jack supports straight keys and iambic paddles
  • Open Source hardware and firmware, Arduino UNO compatible https://github.com/profdc9/RFBitBanger
  • External sound-card FSK digital modes supported (including FT4/FT8)
  • Experimental SSB support
  • Serial port support (2400 baud) for send and receive in keyboard modes

SCAMP is a new protocol that allows keyboard-to-keyboard contacts with a digital protocol that has excellent connection performance. See Dr. Marks presentation about RFBitBanger at QSO Today Academy in September 2023 to learn more about SCAMP and the RFBitBanger project. Link below:

All surface mount parts on the main board are pre-installed at the factory. All the through-hole parts you need to complete the radio are provided for you to solder yourself.

Builder’s notes and photos of all the components to help you identify and install them can be found here:

https://github.com/OpenResearchInstitute/RFBitBanger-kit/tree/main/batch2

If you don’t know how to wind toroids or solder surface mount capacitors, this is an excellent kit to learn on. There are just six toroids on the main board, and two on each band pass filter board. You can build just one band pass filter board and operate on a single band, or you can build an assortment. We provide 12 filter boards, enough toroids to build any 9 filters, and a supply of capacitors that will let you build those 9 filters for 9 different HF ham bands. These capacitors are size 1206, which is the largest common size for SMT capacitors and the easiest to solder manually. All you’ll need is a pair of tweezers and your regular soldering iron and solder. We provide detailed instructions on winding the toroids and soldering the capacitors. You get spare filter boards to experiment with.

Friendly Support is provided through a dedicated Open Research Institute Slack channel.

Instructions on how to join this community are here:

https://www.facebook.com/openresearchinstitute https://www.instagram.com/open_research_institute/
https://x.com/OpenResearchIns

400 Subscriber Milestone on YouTube

Thank you to everyone reading this that has supported ORI and how we publish our work on YouTube.

I know YouTube is not for everyone, but it is an effective way to communicate what we do, what challenges we face, and it lets people know there’s a community out there 1) doing things that they might find wonderful and 2) is worth hearing more about.

We have 400 subscribers, which is a bit of a milestone. This is a lot for a very technical all-volunteer organization that devotes its time supporting and promoting project work, while staying firmly in the background.

Our proudest moments are when projects succeed and are recognized on their own merits, under their own name, and under their own branding. Ribbit, RFBitBanger, Haifuraiya, a variety of published Open Source FPGA work, FPGA training, Opulent Voice, Versatuner, Dumbbell, actively participating in IEEE, FCC TAC membership, Remote Labs, our many regulatory successes, and our active and successful mentoring in professional and academic settings – these are all clear indications that we’re on the right track and doing a great job.

Not explicitly mentioned are the many places we’ve helped projects succeed behind the scenes, around the world.

We are committed to an altruistic approach that delivers clear value to project work. This approach has been abused only once, by one organization.

Being accountable, open, and successful is the cost of doing our type of business. This is a price happily paid.

Thank you for being part of it!

https://www.youtube.com/c/OpenResearchInstituteInc

ORI at QSO Today Academy 9-10 September 2023

Open Research Institute presents two talks and an organizational showcase at the 9-10 September QSO Today Academy this upcoming weekend. https://www.qsotodayhamexpo.com/

This online event features a broad array of amateur radio talks. The speakers are engaging and inspiring. Q&A, connection, and conversation are a priority at QSO Today.

See Dr. Daniel Marks speak about the RFBitBanger project and the SCAMP mode at 1300 US Pacific Time on 9 September. Details of the talk can be found at https://wze95h.qsotodayhamexpo.com/sessionInfo/_the_rfbitbanger_an_off_the_grid_emergency and the repository for this ORI project is https://github.com/profdc9/RFBitBanger

See Michelle Thompson speak about A Shortened HF Antenna at 0900 US Pacific Time on 9 September. Details of this talk can be found at https://wze95h.qsotodayhamexpo.com/sessionInfo/22 and the ORI repository for this project is https://github.com/OpenResearchInstitute/dumbbell

Please visit Open Research Institute’s exhibit at QSO Today Academy from the main portal.

Thank you to everyone that supports work at ORI.

RFBitBanger DEFCON31 Show Special has Sold Out

Thank you to everyone helping spread the word about the HF QRP digital RFBitBanger kit DEFCON31 Show Special. We sold out the 99 kits with 13 hours to spare.

Here’s the geographical distribution of this version of the RFBitBanger kit.

Main boards are in process at the manufacturer with final inspection expected today, 31 August 2023.

The bandpass filter boards, which have been upgraded from “three bands included and one spare” to “nine bands included and three spares” at no additional cost, are in process and expected to be complete no earlier than 4 September 2023.

Kitting is well underway with the machining of the heat sinks completed.

This DEFCON31 version of the board is black in color to distinguish it from potential future versions. Here is a rendering of the top side of the board.

The RFBitBanger team is discussing future builds on the #rfbitbanger channel on our Slack account right now.

The next opportunity for a show special is for QSO Today Academy, 9-10 September 2023, where Dr. Daniel Marks is speaking about the RFBitBanger and SCAMP mode. Find out more about this event here: https://www.qsotodayhamexpo.com/

This project would not be successful with your support, feedback, and advice. Thank you all for making this project, one of many at ORI, a big success. There’s been a lot of interest in this project and some very nice coverage from Hackaday and QRZ blogs, with more articles expected in the future.

Getting the word out about what we do is up to people like you. Do you know of any open source digital radio projects that need a friendly and supportive home? We can help with ethical, professional, and competent research and development support.

https://www.openresearch.institute/your-project-is-welcome/

Inner Circle Newsletter – All About the RFBitBanger

Three Days Remaining for the RFBitBanger HF Radio Kit DEFCON Show Special

Be a part of the future with a prototype kit build of the RFBitBanger, a low-power high-frequency digital radio by Dr. Daniel Marks KW4TI. Presented by Open Research Institute, this kit is designed to produce 4 watts of power and opens up a new digital protocol called SCAMP. Your donation in exchange for this kit directly enables the development of an innovative Class E amplifier based radio design. It has a display, button menu navigation, and keyboard connection for keyboard modes and keyboard-enabled navigation. This radio can be taken portable or used in a case. If you have a 3d printer, then Dr. Marks has a design ready for you to print.

  • Built-in digital modes: CW, RTTY, SCAMP (FSK and OOK, multiple speeds)
  • Key jack supports straight keys and iambic paddles
  • Open Source hardware and firmware, Arduino UNO compatible https://github.com/profdc9/RFBitBanger
  • External sound-card FSK digital modes supported (including FT4/FT8)
  • Experimental SSB support
  • Serial port support (2400 baud) for send and receive in keyboard modes

SCAMP is a new protocol that allows keyboard-to-keyboard contacts with a digital protocol that has excellent connection performance. See Dr. Marks presentation about RFBitBanger at QSO Today Academy in September 2023 to learn more about SCAMP and the RFBitBanger project. Information about that event is here: https://www.qsotodayhamexpo.com/

All surface mount parts on the main board are pre-installed at the factory. All the through-hole parts you need to complete the radio are provided for you to solder yourself. If you don’t know how to wind toroids or solder surface mount capacitors, this is an excellent kit to learn on. There are just six toroids on the main board, and two on each band pass filter board. You can build just one band pass filter board and operate on a single band, or you can build an assortment. We provide 12 filter boards, enough toroids to build any 9 filters, and a supply of capacitors that will let you build those 9 filters for 9 different HF ham bands. These capacitors are size 1206, which is the largest common size for SMT capacitors and the easiest to solder manually. All you’ll need is a pair of tweezers and your regular soldering iron and solder. We provide detailed instructions on winding the toroids and soldering the capacitors. You get spare filter boards to experiment with.

Support is provided through a dedicated Open Research Institute Slack channel.

Instructions on how to join the ORI community are here:
https://openresearch.institute/getting-started

Delivery is no earlier than late August 2023. Will be posted here and on the ORI website at https://www.openresearch.institute/rfbitbanger-project/

If you missed this sale, check out the upcoming show special at QSO Today Academy.

Want to Learn More About RFBitBanger?

Project lead Dr. Daniel Marks will give a presentation about the RFBitBanger at QSO Today Academy 9 September 2023 1300 PDT, 0800 UTC.

Daniel Marks, KW4TI, is a Ph.D. in Electrical Engineering, having graduated from the University of Illinois at Urbana-Champaign in 2001. His fields of speciality include optical engineering, computed imaging, and signal processing. He has made dozens of open hardware projects including many for amateur radio.

https://wze95h.qsotodayhamexpo.com/sessionInfo/_the_rfbitbanger_an_off_the_grid_emergency

The recent shortage of semiconductors, parts important for electronics, shows us that supply chains can be fragile. What does this mean? It means if we have a big problem for a long time, our advanced radios might be tough to keep working, which could be a problem in an emergency.

To solve this, a new kind of radio called the RFBitBanger has been created. It’s a type of low power, long-distance radio that is easy to build from basic parts using simple tools. It uses a new digital language, called SCAMP, made specifically for this radio.

All the signal work is done by an Arduino processor. What’s cool is that the radio has a small screen and buttons or you can even attach a keyboard. It’s a full text communications system all by itself. SCAMP is pretty special too. Even though it only needs a simple 8-bit microcontroller, it can do lots of things that digital modes like FT8 can do using small bandwidth and something called forward error correction.

The RFBitBanger radio has other helpful features. It can support CW (which is Morse code), RTTY (another way of sending text), and SSB phone (voice communication).

We hope that the RFBitBanger can serve as an easy-to-build and easy-to-maintain emergency radio. It can also be a great educational kit. And, it can be a lifesaver when there’s a big shortage of parts.

Media for RFBitBanger

Thank you to Hackaday and QRZ forums for covering the RFBitBanger project. Here are the links to the articles.

https://www.hackster.io/news/daniel-marks-rfbitbanger-is-a-qrp-radio-kit-for-the-end-of-civilization-or-for-fun-6ee3b5956eb7

https://www.qrz.com/articles/node_1692683709

RFBitBanger Kit DEFCON31 Show Special

Be a part of the future with a prototype kit build of the RFBitBanger, a low-power high-frequency digital radio by Dr. Daniel Marks KW4TI. Presented by Open Research Institute, this kit is designed to produce 4 watts of power and opens up a new digital protocol called SCAMP. Your donation in exchange for this kit directly enables the development of an innovative Class E amplifier based radio design. It has a display, button menu navigation, and keyboard connection for keyboard modes and keyboard-enabled navigation. This radio can be taken portable or used in a case. If you have a 3d printer, then Dr. Marks has a design ready for you to print.

Receive a kit for your donation here: https://us.commitchange.com/ca/san-diego/open-research-institute/campaigns/defcon31-rfbitbanger-show-specpeial

  • Built-in digital modes: CW, RTTY, SCAMP (FSK and OOK, multiple speeds)
  • Key jack supports straight keys and iambic paddles
  • Open Source hardware and firmware, Arduino UNO compatible https://github.com/profdc9/RFBitBanger
  • External sound-card FSK digital modes supported (includes FT4/FT8)
  • Experimental SSB support
  • Serial port support (2400 baud) for send and receive in keyboard modes

SCAMP is a new protocol that allows keyboard-to-keyboard contacts with a digital protocol that has excellent connection performance. See Dr. Marks presentation about RFBitBanger at QSO Today Academy in September 2023 to learn more about SCAMP and the RFBitBanger project. Information about that event is here: https://www.qsotodayhamexpo.com/

Surface mount parts are pre-installed. You will need to have through-hole parts installation skills to complete the kit. If you don’t know how to wind toroids, this is an excellent kit to learn on. 80, 40, and 20 meter band pass filters are included. More will be available soon.

Support is provided through a dedicated Open Research Institute Slack channel.

Instructions on how to join are here:

Delivery is no earlier than late August 2023. Updates will be shared here in the news section as well as on the RFBitBanger page at https://www.openresearch.institute/rfbitbanger-project/

Inner Circle Newsletter March 2023

March 2023 Inner Circle
Welcome to our newsletter for March 2023!

Inner Circle is a non-technical update on everything that is happening at ORI. Sign up at this link http://eepurl.com/h_hYzL

Contents:
FPGA Workshop Cruise with ORI?
ORI’s Birthday 6 March – Celebrate With Pins!
RFBitBanger Prototypes
Announcing the ORI App Stores
QSO Today Ham Expo Spotlight
Jay Francis in QEX
Pierre W4CKX Declares Candidacy for ORI Board of Directors

FPGA Workshop Cruise with ORI?
Want to learn more about open source FPGA development from experts in the field? Want to get away? How about something that can give you both? We are looking at organizing an FPGA Workshop Adventure Cruise. Be part of the planning and write fpga@openresearch.institute

ORI’s Birthday – Celebrate With Pins!
We celebrate our 4th birthday on 6 March 2023. Thank you to everyone that has helped ORI grow and succeed in so many different ways. To commemorate our anniversary, we have a limited edition acrylic logo pin. They will be available for a small donation at all upcoming in-person events. Where will be be? We’ll be at DEFCON 31 and IEEE IWRC in Little Rock, AR, USA 13-14 September 2023. Want to include us at your event before then? Let us know at hello@openresearch.institute

RFBitBanger Prototypes
Interested in high frequency amateur (HF) bands? Want to learn about Class E amplification? Excited about open HF digital protocols that aren’t just signal reports? Well, we have a kit for you. Here’s a walk-through by Paul KB5MU of all RFBitBanger modes. This project is lead by Dr. Daniel Marks, is enthusiastically supported by ORI, and will be demonstrated at DEFCON in August 2023. We are doing all we can to have kits available for sale by DEFCON, or sooner.

Announcing the ORI App Stores
Open Research Institute can be found in the Google Play Store and the Apple App Store. That’s right – we are in both app stores delivering open source mobile apps. Thank you to everyone that has helped make this possible. The Ribbit app will be available on both platforms as our initial release. Do you know of an open source application that needs a home? Get in touch at hello@openresearch.institute and let’s talk. We want to share our platform and support applications that help open source and amateur radio.

QSO Today Ham Expo Spotlight
We hope to see you again at QSO Today Ham Expo, 25-26 March 2023. If you haven’t gotten a ticket yet, please visit https://www.qsotodayhamexpo.com/
This is a wonderful event that showcases the best parts of amateur radio. The theme for this Ham Expo is “New License – Now What?” Recordings will be available on the Ham Expo platform for a month, and then will be available on YouTube for anyone to view. ORI will volunteer at the March 2023 QSO Ham Expo session and will have technical presentations, a booth, and poster sessions at the Autumn 2023 QSO Today Ham Expo.

Jay Francis in QEX
Please see page 20 of the March/April 2023 issue of QEX magazine for an article co-authored by Jay Francis, our AmbaSat Re-Spin team lead. Excellent job, Jay!

Pierre W4CKX has declared his candidacy for ORI Board of Directors
We welcome Pierre’s interest in being a member of the board. Pierre is the Ribbit project lead. He brings broad industry knowledge, experience in Agile project management, a commitment to ethical leadership, and innovative energy. Learn about all our directors at https://www.openresearch.institute/board-of-directors/

Are you interested in supporting work at ORI? Consider being part of the board. We’d like to expand from 5 to 7 members in order to better serve our projects and community.

We’ve got lots going on with Opulent Voice, Haifuraiya, AmbaSat Respin, and regulatory work. We support IEEE in many ways, one of which is logistics support with technical presentations such as “Advances in AI for Web Integrity, Ethics, and Well Being” by Srijan Kumar PhD. Video recording of his talk can be found here.

Thank you from everyone at ORI for your continued support and interest!

Whatever will be do for our April 1st newsletter?

Want to be a part of the fun? Get in touch at ori@openresearch.institute