HamSci Data Plane + Satellite (research questions and proposed work plan)

Link to PDF

Abstract
HamSci, or Ham Radio Science Citizen Investigation, advances scientific research and understanding through amateur radio activities. Primary cultural benefits include the development of new technologies along with providing excellent educational opportunities for both the amateur community and the general public.

The HamSci Space Weather System is a HamSci project. HamSci Space Weather Stations form a distributed radio network dedicated to space weather research. HamSci Space Weather Stations produce receiver data from transmitters associated with coordinated observations. Sensors range from ground magnetometers, to ionospheric sounders, to lightning detectors and more. The diversity of sensor types means a wide variety of radios can participate.

A collaboration between HamSci and Tucson Amateur Packet Radio (TAPR) was proposed at the Digital Communications Conference (DCC) on 14-16 September 2018 in Albuquerque, New Mexico. Discussions about custom software-defined radio hardware designed, built, and sold by TAPR as HamSci Space Weather Stations began at the conference and continued though a Google Group.

HamSci presented at the TAPR DCC Sunday Seminar. Slides introducing possible sensor types from that presentation are reproduced throughout the full document linked above.

The receiver network employs a wide variety of sensor types. Combining sensor data from disparate sources, when the end result has greater certainty, accuracy, or quality than if the data was used individually, is called sensor fusion. The HamSci Space Weather System, as proposed above, can be affordably accomplished through sensor fusion.

For example, a $150 dedicated lightning detector on a Raspberry Pi in Florida, USA can participate in this network with a $6331 USRP X310 station sampling at highest rate and bandwidth in Madrid, Spain. The inexpensive data from the lightning detector may enhance the data from the expensive radio and increase scientific knowledge. Another example is a set of five inexpensive radios configured as ionosondes. The data combined is better than any one station’s individual contribution.

Open Research Institute (ORI) proposed an open source cubesat as part of the network. Observing from ground and space simultaneously provides substantial additional scientific value. The receiver network can be coordinated to make scheduled observations that align with satellite passes. This can be enabled with SatNOGS open source software. See https://satnogs.org/ for more information about this open source satellite network on the ground.

ORI believes that the central challenge of the HamSci Space Weather Station project is not the radio hardware. It is how the radios are interconnected, what metadata is accepted, how observations are scheduled, how the interactions between different sensor data is modeled, and how the large quantity of data is handled, organized, and re-used over time. This is the Data Plane.

Leave a Reply

Your email address will not be published. Required fields are marked *